Human red blood cell Wright antigens: a genetic and evolutionary perspective on glycophorin A-band 3 interaction.
نویسندگان
چکیده
The Wright (Wra/Wrb) blood group polymorphism is defined by an allelic change (Lys658Glu) in the band 3 protein; nevertheless, the Wrb antigen apparently requires glycophorin A (GPA) for surface presentation. To gain insight into the structural basis for this protein-protein interaction and delineate its relationship with Wrb antigen expression, we investigated GPA and band 3 sequence polymorphisms occurring in rare humans and nonhuman primates. The lack of GPA or amino acid residues 59 through 71 of GPA results in the absence of Wrb from human red blood cells (RBCs) exhibiting the MkMk, En(a-), or MiV phenotype. However, the SAT homozygous cells carried a Glu658 form of band 3 and a hybrid glycophorin with the entire GPA extramembrane domain from residues 1 through 71, yet expressed no Wrb antigen. This finding suggests that formation of the Wrb antigenic structure is dependent on protein folding and that the transmembrane junction of GPA is important in maintaining the required conformation. Comparative analyses of GPA and band 3 homologues led to the identification in the interacting regions of conserved and dispensable amino acid residues that correlated with the Wrb positive or negative status on nonhuman primates. In particular, the chimpanzee RBCs cells expressed Wrb and the Glu658 form of band 3, which is identical to humans, but their GPA contained the Gly rather than Arg residue at position 61. Taken together, the results suggest that (1) Arg61 of GPA and the proposed Arg61-Glu658 charge pair are not crucial for Wrb antigen exhibition and (2) the role of GPA for interaction with band 3, including Glu658, probably involves a number of amino acid residues located in the alpha-helical region and transmembrane junction.
منابع مشابه
Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene.
Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of ...
متن کاملComplete Deficiency of Glycophorin A in Red Blood Cells From Mice
Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of ...
متن کاملChanges in the blood group Wright antigens are associated with a mutation at amino acid 658 in human erythrocyte band 3: a site of interaction between band 3 and glycophorin A under certain conditions.
The Wright (Wr) blood group antigens, Wra and Wrb, have been suggested to be determined by alleles of the same gene. The Wrb antigen appears to involve both red blood cell (RBC) band 3 and glycophorin A (GPA). We have examined the cDNA sequences of the band 3 and GPA of one of the two known Wr(a+b-) individuals. We show that this individual is homozygous for the mutation Glu658-->Lys in band 3,...
متن کاملErythrocyte membrane proteins reactive with IgG (warm-reacting) anti-red blood cell autoantibodies: II. Antibodies coprecipitating band 3 and glycophorin A.
In our initial immunochemical study of the red blood cell (RBC) membrane proteins targeted in 20 cases of warm-antibody autoimmune hemolytic anemia (AHA), RBC eluates of 6 patients mediated immunoprecipitation (IP) of both band 3 and glycophorin A (GPA). This dual IP pattern had previously been observed with murine monoclonal antibodies (MoAbs) against the high frequency blood group antigen, Wr...
متن کاملPerturbation of red blood cell membrane rigidity by extracellular ligands.
It is known that binding of extracellular antibodies against the major sialoglycoprotein, glycophorin A, reduced the deformability of the red blood cell membrane. This has been taken to result from new or altered interactions between the glycophorin A and the membrane skeleton. We have shown by means of the micropipette aspiration technique that antibodies against the preponderant transmembrane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 87 9 شماره
صفحات -
تاریخ انتشار 1996